Digital IOr Leakage Current Clamp Tester

IOr Leakage Current Model MCL-400IR

About IOr Leakage Current

Recently, the leakage current clamp meter is widely used for insulation control of low voltage circuit as the supplementary method of the insulation resistance measurement.

The control of leakage current has the advantages to enable the prediction of insulation condition in the electric power line without having to shut off power.

The leakage current (I0) include the capacitive leakage current(I0c) originated in the capacitance and the resistive leakage current (I0r) originated in the insulation resistance each related to the ground. It is considered that the measurement of resistive leakage current(I0r) is very useful and effective method for the insulation control of low voltage circuit.

However, it was difficult to measure the resistive leakage current (IOr)only with traditional leakage current clamp meter.

MCL-400IR new digital clamp tester enabled the measurements of the resistive leakage current(IOr) without voltage input(phase detection).

SPECIFICATIONS

Measuring function	: Load current, leakage current (I0)	
	Resistive leakage current (I0r)	
	Harmonics current & voltage	
	(Fundamental, 3 rd ,5th,7th,11th&13th)	
	AC Voltage	
CT opening capability	$\phi 40$ mm	
Influence of external magnetic field	: Less than 5mA (nearby 100A conductor)	
Withstanding voltage	AC 2200V,1minute	
Measuring Range	: AC 0-40mA, 400mA, 4A, 40A, 300A,	
	AC $0\sim 500V$	
Input Frequency	: 45-65Hz	
Measuring method	: Dual slope integration mode	
AC conversion	Average sensing rms reading	
Display	: 3.5 digit LCD, max. reading of 4000	
Sampling	2 times/sec., 1 time/6 sec. for Ior	
	measurement	
Over range indication	: "OL" mark on LCD	
Low battery indication	: "Battery mark" on LCD	
Data hold indication	: "DH" mark on LCD	
Auto power off function	Approx.10 minutes later after final key operation	
Power supply	: 1.5V ("AAA" sixe, um-4)x3 or AC adaptor (Option)	
Power consumption	: Approx 8mA (approx 60 hours continuous)	
Limitation of circuit voltage	: Less than AC 500V	
Operating temperature	0° $\sim 40^{\circ}$ $< 80^{\circ}$ BH (w/o condensation)	
Storage temperature	$:-10^{\circ}$ \sim 60° $<$ 70° BH (w/o condensation)	
Size & weight	(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	
	· Approx 440g including battories	
	· Approx. 440g menuling batteries	

Measuring Ranges and Accuracy

Range	Resolution	Accuracy
40mA	0.01mA	
400mA	0.1mA	$\pm 1.0\%$ rdg ± 8 dgt
4A	0.001A	
40A	0.01A	
300A	0.1A	$\pm 1.0\%$ rdg $\pm 1\%$ FS
500V	0.1V	$\pm 1.0\%$ rdg ± 8 dgt
	Range 40mA 400mA 4A 40A 300A 500V	Range Resolution 40mA 0.01mA 400mA 0.1mA 4A 0.001A 40A 0.01A 300A 0.1A 500V 0.1V

Accuracy for Harmonics Current and Voltage

Fundamental, 3^{rd} , 5^{th} , 7^{th} : $1\%rdg\pm 5dgt\pm AC$ current & voltage accuracy 11^{th} and 13^{th} Harmonics $2\%rdg\pm 5dgt\pm AC$ current & voltage accuracy (Min. fundamental input current : more than 2% of each current)

Measuring Principle for IOr Leakage Current

It is observed that the load connected to the low voltage side of the transformer generates the harmonics in the current flow in the power line. And it is observed 5^{th} and 7^{th} harmonics current causes the phenomenon of voltage drop at the high voltage side of the transformer.

This voltage drop at high voltage side added the drops of other related power line generates the terminal voltage with harmonics at low voltage side.

Thus, 5th and 7th harmonics current is generated at the low voltage side by the influence of high voltage side, and it is considered the ratio of these 5th and 7th harmonics current is always constant.

Consequently, the ratio of 5th and 7th harmonics flowing into earth line is changed proportionally according to the ratio of capacitive component and resistive component in the circuit.

On the other hand, when the long line is used, it is observed that the fundamental current component into earth line is increased proportionally and the ratio of 5^{th} and 7^{th} harmonics current is also changed due to the increase of capacitance and inductance of the circuit.

By above fact ,the calculation factor can be obtained by the measured ratio of 5th and 7th harmonics current and fundamental current component into earth line. Thus, the resistive leakage current(IOr) can be obtained by the computation of the calculation factor and compensation factor of the circuit.

And it is reported that the satisfactory test result was observed from our many practical field tests in Japan.